Mahatma Gandhi Chitrakoot Gramodaya Vishwavidyalaya Chitrakoot, Distt. - Satna (M.P.)

Master of Science

in

Physics

Regulations, Scheme of Study and Syllabus

w.e.f. 2014-2015

Mahatma Gandhi Chitrakoot Gramodaya Vishwavidyalaya, Chitrakoot Scheme of Study and Examination for the Degree in M.Sc.(Physics) w.e.f. 2014-2015

Code	Name of Paper	Credits
SMP-501	Mathematical Physics	3
SMP-502	Classical Mechanics	3
SMP-503	Electronics Devices	3
SMP-504	Computer Architecture & Assembly Language Programming	3
SMP-505	LabA- Electronics Devices	3
SMP-506	LabB- Computer Architecture & Assembly Language Programming	3
	Total Credits	18

Semester - I

Semester	-	Π
----------	---	---

Code	Name of Paper	Credits
SMP-507	Quantum Mechanics-I	3
SMP-508	Statistical Mechanics	3
SMP-509	Electrodynamics and Plasma Physics	3
SMP-510	Condensed Matter Physics	3
SMP-511	LabA- Electrodynamics and Plasma Physics	3
SMP-512	LabB- Condensed Matter Physics	3
	Total Credits	18

Semester - III

Code	Name of Paper	Credits
SMP-601	Quantum Mechanics-II	3
SMP-602	Nuclear and Particle Physics	3
SMP-603	Special paper-I	3
SMP-604	Special paper-II	3
SMP-605	Lab A- Based on Special paper-I	3
SMP-606	Lab B- Based on Special paper-II	3
	Total Credits	18

Semester - IV

Code	Name of Paper	Credits
SMP-607	Atomic and Molecular Physics	3
SMP-608	Elective Paper	3
SMP-609	Special Paper-I	3
SMP-610	Special Paper-II	3
SMP-611	Lab A- Based on Special paper-I	3
SMP-612	Lab B- Based on Special paper-II	3
SMP-613	Project work	8
	Total Credits	26
	Grand Total Credits	80

The student should offer any two of the following special papers and one of the elective papers: Special papers in Semester IV will be the same as offered in semester III.

Sem-III-Paper III special papers-I	Sem-IV Paper IV special papers-II	Sem-IV-Paper- II Elective Paper
(A) Electronics - I	(A) Electronics – II	(A)Physics of Lasers and Laser Applications
(B) Informatics - I	(B) Informatics - II	(B)Physics of Nano-materials
(C)Astrophysics-I	(C) Astrophysics-II	(C)Computer Programming and Informatics

Note: Experiments should be based on syllabus.

SMP-5	01 MATHEMATICAL PHYSICS	Credit-03
UNIT-I:	Polynomials- Legendre, Hermite and Laguerre polynomials and thei	r generating
	functions. Recurrence relations and special properties of $Pn(x)$ as	solution of
	Legendre differential equation, Rodrigues formula, orthogonality	of $Pn(x)$,
	associated Legendre polynomials (Introdution only).	
UNIT-II	: Bessel function of first kind, generating function, recurrence relatio	ns, Jn(x) as
	solution of Bessel differential equation, Expansion of Jn(x) when n is l	half and odd
	integer, Integral representation.	
UNIT-II	I: Complex Variable: Function of a complex variable, Cauchy Riemanr	1 conditions,
	Cauchy's integral theorem (without proof), Cauchy's integral formul	a, Cauchy's
	Residue theorem, singular points and evaluation of definite integrals of the	he type $\int 0.2\pi$
	$f(\sin\theta, \cos\theta)d\theta$, $J-\infty \propto f(x) dx$, $J-\infty \propto f(x) eiaxdx$	_
UNIT-I	: Integral Transforms: Laplace Transform, First and second shifting theory	rems,Inverse
	LT by partial fractions, LT of derivative and integral of a function, Solut	ion of initial
	value problems by using LT,	A 1 */
UNIT-V	Fourier series and Fourier Transform: Fourier series, Half range expansion	on, Arbitrary
T (period, Fourier integral and transforms, F1 of delta and Gaussian function	n.
Text and	I Keterences Books	
I. Math	ematical method for Physics by G. Artken	
2. Adva	nced Engineering Mathematics by E.Kreyszig	
5. Spec	al Functions by E.D Kainville	
4. Spec	ial Functions by w.w Bell	
5. Func	tions of complex variable by R. v. Churchill	(Tobaco and
o. Main	ematical Method for Physicists and Engineers by K.F.Relly, M.P.J	Hodson and
5.J.B	ence	

SMP-502 CLASSICAL MECHANICS		Credit-03		
UN	IIT-I:	Preliminaries: Newtonnian mechanics of one and many particle syste	ems, Simple	
		Pendulum with rigid support, Two connected masses with string passing	over a pully,	
		Virtual work, Rolling mass inside or outside a circular ring, Const	raints; their	
		classification, D'Alembert's principle, generalized coordinates.		
UN	IT-II:	Hamilton's principle: Derivation of Lagrange's equation from Hamilton	i's principle,	
		advantages of variational principle formulation, Principle of least action.		
UN	IT-III:	Two body central force problem: Motion in a central force field, The via	rial theorem,	
		The inverse square law of force, The motion in central force in the Kepler	r problem.	
UN	IT-IV:	Hamiltonian equations of motion: Legendre transformations and Hamiltonian	on equations	
		of motion, Cyclic coordinates and conservation theorem, Canonical tra	insformation	
		generating functions, Properties, Poisson bracket, Poisson theorem,	Relation of	
		Poisson brackets . Hamilton Jacobi method		
UN	IT-V:	Small oscillations: Concept of small oscillations, Expression of kinetic	energy and	
		potential energy for the problem of small oscillations, Frequencies of free	ee vibration,	
		and Normal coordinates.		
Te	Text and Reference Books			
1.	H. Gold	Istein : Classical Mechanics		
2.	N.C. Ra	ana and P.S. Joag : Classical Mechanics		
3.	A. Som	merfiel : Mechanics		

4. Perceival and D. Richards: Introduction to Dynamics

SN	1P-503	ELECTRONIC DEVICES	Credit-03		
UN	IT-I:	Conduction Mechanism in Metals: Mobility and conductivity, I	Bound and free		
	electrons, Energy distribution of electrons, Fermi level, The density of states,				
		Thermionic emission.			
UN	IT-II:	Conduction Mechanism in Semiconductors: Direct and indirect	semiconductors,		
		charge carriers concentrations, Drift of carriers in electric and	magnetic fields,		
		Diffusion of carriers, The contact potential.			
UN	[T-111:	Semiconductor-diode characteristics: Qualitative theory of P-N	junction, Space		
		charge at a junction, Forward and reverse bias junctions, Reverse	bias breakdown,		
TINT		Zener diode.	CD CE CC		
UN	11-10:	Bipolar Junction Transistors: Transistor current components,	CB, CE, CC		
		CE configurations, input output characteristics, Early Effect, Graphical	of a Transistor		
		amplifier circuit using h parameters. Measurement and graphical de	termination of h		
		narrameters. Hybrid π model The re transistor model Ebers-Moll m	odel Transistor		
		biasing and thermal stabilization. The operating point Bias stability			
UN	T-V:	Field Effect Transistors: Construction and characteristics of	JFET. transfer		
		characteristic, The FET small signal model, Measurement of gm and	d rd, JFET fixed		
		bias, Self bias and voltage divider configurations, Use of FET as vo	oltage controlled		
		resistor, JFET source follower (common-Drain) configuration, JFET	Common – Gate		
		configuration, Depletion and enhancement type MOSFETs.			
Tex	t and l	Reference Books			
1.	Solid S	tate Electronic Devices by B.G. Streetman			
2.	Electro	nic Devices and Circuit Theory by R.L. Boylested and L. Nashelsky			
3.	Integra	ted Electronics by J. Millman and C.C. Halkias			
4.	Introdu	ction to Semiconductor Devices by M. S. Tyagi			
5.	Electro	nic Devices and Circuits by Balbir Kumar and S.B. Jain			
6.	K. Thygarajan (Cambridge Univ.Press.).				

SMP-504	Computer Architecture & Assembly Language Programming	Credit-03
UNIT-I:	Basic Computer Organization: Block diagram, Evolution and C	lassification of
	computers, Data representation in computers - Binary, Octal and	d Hexadecimal
	numbering systems and their interconversion, Binary codes BCD, H	EBCDIC, Gray,
	Parity, Error correction codes, Concepts of Boolean Algebra: Ba	asic Postulates,
	canonical form, Minimization Techniques, Karnaugh Map .Logic ga	ates, Flip-Flops
	(RS, D, JK, T),	

- **UNIT-II:** Basic Building Blocks of Computers: Registers (Shift Register), Counters (Binary, Up, Down, Ripple),Register transfer, Bus and Memory transfer, Arithmetic ,shift and logic Micro-operations, CPU: introduction, general register organization ,addressing modes, Memory organization- Memory hierarchy, Main memory, Auxiliary memory, Associative memory, Cache memory, Virtual memory, Data transfer: Modes *of* transfer, Asynchronous and Synchronous data transfer, DMA.
- **UNIT-III:** Internal architecture of 8086/8088 Microprocessor: Software model *of 8086/88*, Memory Address Space and Data Organization, Data types, Segment registers and Memory Segmentation, Instruction pointer, Data registers, Pointer and Index registers, Status register, The Stack, I/O Address Space, Addressing modes *of* the 8086/88, Converting Assembly Language instruction to Machine Code, The IBM PC and its DEBUG program.
- **UNIT-IV:** Introduction to 8086/88 programming: The instruction set *of* the 8086/88, Data transfer, Arithmetic, Logic, Shift and Rotate instructions, Flag control instructions. Compare instruction; Jump instructions, Subroutines and subroutine handling instructions. The loop and loop-handling instructions, Strings and String handling instructions, Interrupts in 8086, Introduction to DOS/BIOS interrupt programming.
- **UNIT-V:** Introduction to C++ : General concepts, structure of C++ program, variables and constants, operators and expression, Flow of control, conditional and unconditional loops, Data types, Array, functions, standard Library functions, Programming methodology, type of errors, Scientific programmers with examples, organization and handling of files in C++.

Text and Reference Books:

- 1. M. Moris Mano: Computer System Architecture, PHI
- 2. Waiter A. Triebel and Avtar Singh: 8088 and 8086 microprocessors: Programming, interfacing software, hardware and applications, PHI.

Reference Books:

- 1. John P. Hayes: Computer Architecture and Organization, MGH
- 2. Andrew S. Tannenbaum: Structured Computer Organization, PHI
- 3. Albert Paul Malvino: Digital Principles, TMH
- 4. B. Ram: Microprocessors & Microcomputer, Dhanpat Rai & Sons
- 5. Computational Physics R.C. Verma, P.K. Ahluwalia and K.C.Sharma, New Age Publishers (1999)
- 6. Object Oriented Programming with C++ E. Balaguruswami Tata Mc Graw Hill(1994)

SMP-507	QUANTUM MECHANICS – I	Credit-03
UNIT-I:	Operators and Eigen Functions: Linear Operators, Operator formation	n, orthogonal
	systems, Hermitian operators, Parity operator, commutators. Equation	ns of motion,
	commutation rules and uncertainty principle. Angular Momentum, Rota	tions in three
	dimensional space, Rotations in the coordinate frame. Effect of ma	agnetic field,
	quantum theory of Normal Zeeman effect, addition of angular momen	nta (Clebsch-
	Gordon Coefficients).	
UNIT-II:	Quantum Dynamics - The Equations of motion, Schrodinger Picture	, Heisenberg
	Picture, Interaction Picture, Applications to Linear Harmonic Og	scillator and
	Hydrogen atom.	
UNIT-III:	Approximation Methods: - WKB Approximation - Principle, WKB v	vavefunction,
	criterion for validity of approximation, application to Bound State	. Variational
	Method - Principle, application to the theory of deuteron using Yukawa	Potential.
UNIT-IV:	Approximation method :- Time Dependent Perturbations, transition	probability,
	transitions to the continuum. Time Independent Perturbations, non-de	generate and
	degenerate cases, application to the explanation of Stark effect.	
UNIT-V:	Identical Particles - Principle of indistinguishability of identical p	articles, The
	Helium atom, Pauli's exclusion Principle. Electron Spin :- Spin states o	f an electron,
	Pauli spin matrices, spin states for two particles of spin half.	
Reference	Books:	
(1) Quantur	n Mechanics, Second Edition, V.K.Thankappan, New Age International (P) Ltd	l., New Delhi.
(2) Quantur	m Mechanics - Eugen Merzbacher, Second Edition, John Wiley & Sons, New Y	ork.
(3) Quantui	m Mechanics - John L.Powell & Bernard Crasemann, Addison-Wesley Publish	ning Company,
Massac	husetts.	- T 1
(4) Quantui	n Mechanics, Thrid Edition, Author - Leonard I Schift McGraw Hill Kogakush	a- Tokyo.
(5) Modern	Quantum Mechanics - J.J.Sakurai, Pearson Eduction- Delhi.	

(6) Essentials of Quantum Mechanics -B.N.Srivastava

~			~ ~ ~ ~ ~ ~
S	<u>MP-508</u>	STATISTICAL MECHANICS	Credit-02
UN	IT-I:	Foundation of Statistical Mechanics & Ensembles: Phase space,	concept of
	Ensemble, Ensemble average, Liouville's theorem, equation of motion and		motion and
		Liouville's theorem, Canonical Ensemble, Microcanonical Ensem	ıble, Grand
		Canonical Ensemble, partition functions.	
UN	IT-II:	Statistical Quantities: Calculation of statistical quantities, Energy	and density
		fluctuations, Entropy of an ideal gas using microcanonical Ensem	ıble, Gibb's
		paradox, Sackur- Tetrode equation.	
UN	IIT-III:	Postulates of quantum statistical mechanics, Density matrix, S	statistics of
		indistinguishable particles, Maxwell-Boltzmann, Fermi- Dirac and Bo	ose- Einstein
		Statistics, properties of ideal Bose and Fermi gases, Bose-Einstein conde	ensation.
UN	IT-IV:	Cluster expansion for a classical gas, virial equation of state, ising model	l, mean-field
		theories of the ising model in three, two and one dimentions, Exact solu	tions in one-
		dimension. Landau theory of phase transition, critical indices, scale transit	formation
UN	IT-V:	Fluctuations: Correlation of space-time dependent fluctuations, fluct	uations and
		transport phenomena, Brownian motion, Langevin theory, fluctuation	dissipation
		theorem, The Fokker-Plank equation.	
Te	xt and l	Reference Books	
1.	Statistic	al and Thermal Physics by F. Reif	
2.	Statistic	al Mechanics by K. Huang	
3.	Statistic	al Mechanics by R. K. Pathria	
4.	Statistic	al Mechanics by R. Kubo	
5.	Statistical Physics by Landau and Lifshitz		
6.	Statistic	al Mechanics and properties of matter, theory and application by E.S.R. Gopal	

SMP-509	ELECTRODYNAMICS AND PLASMA PHYSICS	Credit-03
UNIT-I:	Electrostatics: Electrostatic field E due to a charge distribution, Values	s of div E curl
	E, scalar potential Φ , Poisson's and Laplace's equations, Electros	tatic potential
	energy and energy density, Dielectrics, displacement vector D, electric	ostatic energy
	in dielectric media, formal solution of boundary value problems with G	reen function;
	Methods of images, point charge near an infinite conducting plane, P	oint charge in
	the presence of grounded conducting sphere, Point charge in presen	ce of charged
	insulated sphere, Conducting sphere in uniform electric field.	
UNIT-II:	Magnetic statics: Magnetic induction B due to current distribution,	Equation of
	continuity, div B and curl B, Vector potential A, Macroscop	nc equations,
	Magnetization M and magnetic field H.	<i>c</i> <u>c</u> 11
UNI I -1113	11me- Varying Fields: Faraday's law of induction, Energy in the m	lagnetic field,
	Maxwell's displacement current, Maxwell's equations, Maxwell's equa	tions in terms
	or vector and scalar potentials, Poyntings theorem, Relativistic property	due to a point
	charge. Electric and magnetic fields produced by a charged particle in	uue to a point
	arbitrary motion Power radiated by an accelerated charge Larmor's f	ormula and its
	relativistic generalization and angular distribution of radiation fro	m a charged
	particle with collinear velocity and acceleration. Synchrotron radiation.	in a charged
UNIT-IV:	Plane Electromagnetic Wave: Plane electromagnetic waves in a r	onconducting
	medium, Linear and circular polarization, Reflection, Refraction of el	ectromagnetic
	waves at a plain interface between dielectrics, Fresnel relation po	olarization by
	reflection and total internal reflection, Waves in a conducting medium.	-
UNIT-V:	Plasma: Definition of plasma ,Concept of temperature, Debye shieldin	g, Criteria for
	plasma, Single-particle motions in E and B fields, Magnetic mirror	s and plasma
	confinement, Plasma as fluid, the fluid equation of motion , The	stress tensor,
	Equation of continuity and equation of state, Waves in plasmas, Plasma	a oscillations,
	Plasma frequency op, Electron plasma waves, ion waves, Elec	tron and ion
	oscillations perpendicular to B, Electromagnetic waves perpendicu	lar to B and
	parallel to B, Cutoffs and resonances. Kinetic theory and plasm	a, Boltzmann
	equation, Derivation of the equation of continuity and fluid equation	of motion by

taking moments of Boltzmann equation. **Text and Reference Books**

- 1. Classical Electrodynamics by J.D. Jackson
- 2. Foundations of Electromagnetic theory by J.R. Reitz, F.J.Milford and R.W.Christy
- 3. Introduction to Electromagnetic by David J. Griffiths
- 4. Introduction to Plasma Physics and Controlled Fusion, Vol-1: Plasma Physics by Francis F.Chen
- 5. Plasma Physics by S.N. Sen.

SMP-51	CONDENSED MATTER PHYSICS	Credit-03
UNIT-I:	Crystal Physics and Defects in Crystals: Crystalline solids, unit cell and	nd direct lattice
	Bravais lattice in two dimensions (plane lattice) and three-dimen	nsional (space
	lattice), Closed packed structures.	
UNIT-II:	Interaction of X-rays with matter, Absorption of X-rays, X-ray diffrac	tion, The Laue
	powder and rotating crystal methods, The reciprocal lattice and	l its important
	properties and applications, Diffraction intensity, Atomic sca	attering factor,
	Geometrical structure factor.	
UNIT-III	Crystal imperfections: Point defects, line defects and planer (s	tacking) faults
	Estimation of dislocation density from X-ray diffraction meas	urements. The
TINIT IN	Observation of imperfections in crystals: electron microscopic techniq	ues. h theorem The
UNIT-IV	Kronig Donny Model Effective mass of an electron. Tight hinding	approximation
	Cellular and pseudopotential methods. Fermi surface: Fermi surface	approximation
	zones Anomalous skin effect Cyclotron resonance de Hass van	Alphen effect
	Magneto resistance. Hall effect in semiconductors Superconductivity	v: Elements of
	BCS theory. Flux quantization. Meissner effect. Critical tempera	ture. Persistent
	current.	, , ,
UNIT-V:	Ferromagnetism: Weiss theory of ferromagnetism, Heisenberg mode	l and molecular
	field theory, Ferromagnetic domains, The Bloch-wall, Spin waves	and magnons,
	Curie- Weiss law for susceptibility, Ferri and antiferro-magnetic order	
Text and	References Books	
1. Verma	and Srivastava: Crystallography for Solid State Physics	
2. Azaro	f: Introduction to Solids	
3. Omar:	Elementary Solid State Physics	
4. Aschro	off & Mermin: Solid State Physics	
5. Kittel:	Solid State Physics	
6. Chaiki	n and Lubensky: Principles of Condenced Matter Physics	

SMP-601	QUANTUM MECHANICS – II	Credit-03
UNIT-I:	Time dependent Perturbation Theory : First order perturbation, Integ	gration of an
	atom with electromagnetic field, Transition probabilities, Fermi Golder	n rule, Dipole
	approximation.	
UNIT-II:	Induced and Spontaneous radiations: Einstein A and B coefficients,	Induced and
	spontaneous emissions of radiations, their applications in the construction	on of gas and
	solid lasers.	
UNIT-III:	Quantum Theory of Radiation: Classical radiation field, Fourier decon	nposition and
	radiation oscillators, Creation, annihilation and number operators, P	Photon states,
	Quantized radiation field, Basic matrix elements for emission and	absorption,
	Spontaneous emission in the dipole approximation, Plank's radiation law	V.
UNIT-IV:	Relativistic Equations: Klein-Gordon equation and its plane wave solut	ion, Probility
	density in KG theory, Difficulties in KG equation, Dirac equation for a	free electron,
	Dirac matrices and spinors, Plane wave solutions, Charge and curre	ent densities,
	Existence of spin and magnetic moment from Dirac equation of el	lectron in an
	electromagnetic field.	
UNIT-V:	Dirac Equation: Dirac equation for central field with spin orbit intrac	ction, Energy
	levels of Hydrogen atom from the solution of Dirac equation, Covar	riant form of
	Dirac equation.	
Text and 1	Keference Books	
1. Quantu	m Mechanics by L.I. Schiff	

- 2. Modern Quantum Mechanics by J.J. Sakurai
- 3. A Text Book of Quantum Mechanics by P.M. Mathews and K.Venkatesan
- 4. Quantum Mechanics by A. P. Messiah

SMP-602	Nuclear and Particle Physics	Credit-03
UNIT-I:	Nuclear Interactions and Nuclear Reactions: Nucleon- nucl-	eon interaction,
	Exchange forces and tensor forces, Meson theory of Nuclear fo	rces, Nucleon -
	nucleon scattering, Effective range theory, Spin dependence of	nuclear forces,
	Charge independence, Yukawa interaction. Direct and Compound	nuclear reaction
	mechanisms, cross sections in terms of partial wave amplitude, Cor	npound nucleus.
	Scattering matrix, reciprocity theorem, Breit- Winger one level form	nula, Resonance
	scattering.	
UNIT-II:	Nuclear Models: Liquid drop model, Bohr Wheeler theory of fission	on, Experimental
	evidence for shell effects, Shell model, Spin orbit coupling, Magic nu	umbers, Angular
	momenta and parities of nuclear ground states, qualitative discussion	on and estimates
	of transition rates, Magnetic moment and Schmidt lines, collective	model of Bohr
	and Mottelson.	
UNIT-III:	Nuclear Decay: Beta Decay, Fermi theory of beta decay, compar	ative half lives,
	parity violation, two component theory of neutrino decay, detection a	and properties of
	neutrino, gamma decay, multiple transitions in nuclei, shape of the	e beta spectrum,
	total decay rate, Angular momentum and parity selection rules, C	General ideas of
	nuclear radiation detectors, linear accelerator, betatron, protonsyncl	nrotron, electron
	synchrotron.	
UNIT-IV:	Elementary particle: Types of interaction between elementary pa	rticles, Hadrons
	and Leptons symmetry and conservation laws, Elementary idea of	of CP and CPT
	invariance, classification of Hadrons, Lie algebra, SU(2), SU(3) r	nutiplets, Quark
	model, Cell-mann Okubo mass formula for octal and decuplet	hadrons, charm,
	bottom and top quarks.	

UNIT-V: Cosmic Rays : Nature, composition, charge and energy spectrum of primary cosmic rays, production and propagation of secondary cosmic rays, soft, penetrating and nucleonic component, origin of cosmic rays, Rossi curve, Bhabha- Hitler theory of cascade showers.

Text and Reference Books:

- 1. Introductory Physics : Kenneth S. Kiano
- 2. Introduction to Nuclear Physics : H A einge
- 3. Nuclear Physics : E Kaplon
- 4. Nuclear Physics : R.D. Evans
- 5. Nuclear Physics : Ram & Waghmore
- 6. Int. Nuclear Physics : S.B. Patel

SMP-603	SPECIAL PAPER-I: ELECTRONICS – I	Credit-03
UNIT-I:	Operational Amplifier Basic and Application: Review of Feedback, Lin	near Circuit,
	Op-Amp Basic, Inverting and Non-inverting amplifiers, Unity followe	r, Summing
	amplifiers, Integrator, Differentiator, Op- Amp Specifications- DC Off-se	et parameter,
	Frequency parameters, Imperfection in Op- Amplifier application- mu	ultiple stage
	gain, Voltage summing and subtraction, Current controlled voltage sour	rce, Voltage
	controlled current source, Rectifiers and Limiters, Comparators a	and Schmitt
	Triggers, Active filters.	
UNIT-II:	Digital Logic Gates: Symbols and truth tables, Classes of digital integr	ated circuits
	(Diode logic, DTL, TTL, ECL, MOSFET, CMOS), Transistor- Trans	sistor Logic
	(TTL), Single Input TTL Inverter (transfer characteristic), Mult	1- collector
	transistors, Propagation delays, Diode Logic, DTL NAND Gai	te (transfer
	characteristic, noise immunity, fan out), Emitter Coupled Log	ic (transfer
	of MOSEET MOSEET Invertee with active load MOSEET NOP and N	gic- Review
	Complementary MOS (CMOS) CMOS inverter CMOS NOP and NA	AND Bower
	dissipation in CMOS Advantages/Disadvantages of CMOS	IND, FOWEI
IINIT_III.	Digital Electronics and Logic Gate: Binary Octal Heyadecimal num	ber system
01111-111.	Base conversion system Bipolar junction and Field Effect transistor	as switches
	Basic digital logic gates (OR, AND and NOT, NOR NAND and Exc	clusive OR)
	XOR gate. Boolean laws and theorem. Sum of Product (SOP) and Prod	duct of Sum
	(POS) method, Karnaugh map, pair, quad and octave, POS simplification	n, min-term,
	max-term.	, ,
UNIT-IV:	Application of Digital Logic Gate: Half adder and Full adder circuit, r	nultiplexers,
	demultiplexer, Flip- Flop and Registers- RS Flip Flop, D- Flip Flop, T	- Flip Flop,
	JK- Flip Flop, JK Master- Slave Flip Flop, Astable, Monostable an	nd Bi-stable
	multivibrator, types of registers, serial-in-serial out, serial-in-parallel out	, parallel-in-
	serial out, parallel-in parallel out, Counters and Convertors- asynch	ronous and
	synchronous counter, Mod-3 and Mod-5 counters, shift counters, Digita	al-to Analog
	Converters-D/A converter, ladder network, A/D converters.	

UNIT-V: Microprocessor-Intel 8085 microprocessor architecture, interfacing devices, BUS timing, instruction set, simple illustrative program.

Text and Reference Books

- 1. Electronic Device and Circuit: R. Boylested and L. Nashdsky
- 2. Analysis and Design of Digital Integrated Circuit: Hodges, Jackson and Saleh
- 3. Digital Principles and Implementation: A.P. Malvino and D.P. Leach
- 4. Op- Amp and Linear Integrated Circuit: Ramakant A. Gayakwad

Syllabus for M.Sc. (Physics) Semester III

SMP-604	SPECIAL PAPER-II: IFORMATICS – I	Credit-03

UNIT-I: Introduction to Probability and Random variables, Introduction to Information theory and queuing theory. Fourier series and transform and their applications to data communication.

- **UNIT-II:** Introduction and evolution of Telecommunication, Fundamentals of electronic communication: Wired, Wireless, Satellite and Optical Fiber, Analog/Digital, Serial/Parallel, Simplex/half and full duplex, Synchronous/ Asynchronous, Bit/baud rates, Parity and error control, Signal to Noise ratio.
- **UNIT-III:** Transmission types, Codes, Modes, Speed and throughput. Modulation types, Techniques and standards. Base band and carrier communication, Detection, Interference, Noise signal and their characteristics, Phase locked loops. Modems, Transmission media (guided and unguided), common Interface standards.
- **UNIT-IV:** Introduction to Unix/Linux and shell scripting. Introduction to C/ C++. Data types and operators, Statements and Control flow, Functions and Program structures, Strings, The preprocessor, Pointers, Memory allocation, Input and output, Sub program, Recursion, File access.
- **UNIT-V:** Object orientation concepts: Classes, objects, methods and messages, encapsulation and inheritance, interface and implementation, reuse and extension of classes, inheritance and polymorphism, analysis and design; Notations for object-oriented analysis and design, Application of some object oriented programming languages. Introduction to web enabling technologies and authoring tools/ languages, (web casting data base integration, CGI, Peri, Java, HTML, C#)

Text and References Books

- 1. Data Networks Gallager
- 2. Data Communication William stalling
- 3. Analog and Digital communication S. Haykins
- 4. Object oriented Analysis and Design with Application G. Booch, Addison Wesley, 2nd
- 5. Edition, 1994 Beginning Object Oriented Analysis and Design using C++, Jesse Liberty Wrox Press, 1998.
- 6. Multimedia Networking Bohdan O. Szuprowic, McGraw
- 7. Hill, Snigapore, 1995 (ISE) Computer Networks William Stalling, PHI
- 8. Computer Networks A.S. Tanenbaum Prentice Hall of India.

SMP-607	ATOMIC AND MOLECULAR PHYSICS	Credit-03		
UNIT-I:	Quantum Mechanical Treatment of one-electron Atom, Spin-Orbit inte	raction		
	and fine structure of hydrogen atom, Spectra of alkali elements. Singlet	and triplet		
	States of Helium,			
UNIT-II:	Many electron atoms: Central field approximation, Thomas-Fermi field	l, Atomic		
	wave function, Hartree and Hartree –Fock approximations, Spectrosco	pic Terms: L S		
	and J J coupling schemes for many electron atoms, wavefunctions and	energies of		
	multiplets, Electric dipole and Electric Quadrupole.			
	Molecular Physics			
UNIT-111:	Born - Oppenheimer approximation, Heitler-London theory of H2, LA	ACO treatment		
	of H2+ and H2. Classification of Molecules, Types of Molecular	Spectra and		
	Molecular Energy States: Pure Rotational Spectra, Vibrational-Rota	tional Spectra,		
	states Classification of electronic states. Counling of rotational	ation, isotope		
	motions Electronic spectra: Franck Condon principle	and electronic		
UNIT_IV.	Infrared Spectroscopy Raman spectroscopy Photoelectron Spectros	conv Nuclear		
01111-11.	Magnetic Resonance Chemical Shift and Electron Spin Resonance (I	ntroduction		
	and their principles only)	inoduction		
	Snectrosconic Techniques:			
UNIT-V:	General description and working of infra-red Spectrophotometer.	Photoelectron		
01112	Spectrometer. Simple Raman Spectrometer. NMR Spectrometer	er and ESR		
	Spectrometer.			
Text and I	Reference Books			
1. Introdu	ction to atomic spectra by H.E. White			
2. Spectra	of diatomic molecules by Herzberg			
3. Atoms	and molecules by M. Weissbluth			
4. Quantu	m theory of Atomic Structure Vol I by Slater			
5. Quantu	m theory of molecules and Solids by Slater			
6. Fundar	nentals of molecular spectroscopy by C.B.Banwell			
7. Introdu	ction to molecular spectroscopy by G.M.Barrow			
8. Molecu	Ilar spectroscopy by Jeanne L.McHale			
9. Molecu	ilar spectroscopy by J.M.Brown			
10. Spectra	of atoms and molecules by P.F. Bemath			
11. Modern	n spectroscopy by J.M. Holias			

SMP_609	2 4	Flective Paner · I asers and I aser Annlications	Credit_03
UNIT_I	W	principle of laser threshold condition characteristics of las	er Gaussian
	be	am and its properties optical Resonators, longitudinal and transver	se modes of
	las	er cavity, mode selection, gain in a Regenerative Laser cavity. Rate e	auations and
	thr	eshold for 3 and 4 level systems. O switching, mode locking and ot	staining altra
	sho	ort pulses. Spectral narrowing.	U
UNIT-II:	Ru	by laser, He-Ne laser, Nd based lasers, semiconductor lasers, Nitroge	n laser, CO2
	las	er, ion laser Dye laser, chemical laser, excimer laser, Higher power las	ser systems.
UNIT-III:	: La	ser fluorescence and Raman scattering and their use in ranging a	nd pollution
	stu	dies; ultra high resolution spectroscopy with laser, and its application	on in isotope
	sep	paration, single atom detection and rotational and vibration level of mo	lecules.
UNIT-IV:	: Op	tical fibers, use of lasers in light waves communication. Qualitative	treatment of
	me	dical and engineering applications of lasers.	
UNIT-V:	Cr	ystal optics, propagation of light in a medium with variable refra	active index,
	Ele	ectro, optical effect. Non-linear interaction of light with matter, la	aser induced
	mu	ilti-photon processes, second harmonic generation phase matching, th	ird harmonic
	gei	neration optical mixing, Parametric generation of light self focus	ing of light,
	Fre	equency mixing in gases and vapors, Optical instability and o	ptical phase
Toyt and	COI Dof	njugations, Frequency up co version.	
1 Svolto	Nei La	sers	
$\begin{array}{ccc} 1. & \text{Svence}\\ 2 & \text{Vare} \end{array}$. La Onti	ical Electronics	
2. Tarc. V 3 Destro	ver	Laser spectroscopy	
4 Letekh	JOV.	Non-Linear Laser spectroscopy	
5. Lasers	: A	L. Siegman	
6. Optica	1 El	ectronics: K.Tvagrajan & A.K. Ghatak.	

SMP-608	8B	ELECTIVE PAPER II- PHYSICS OF NONOMATERIALS	Credit-03	
UNIT-I:	Introduction to Nonostructure Materials: Nanoscience & nanotechnology, Size			
	dependence of properties, Moor's law, Surface energy and Melting point (quasi			
	me	lting) of nanoparticles,		
UNIT-II:	Ba	nd structure of solids: Free electron theory (qualitative idea) and it	s features, Idea	
	of	band structure, insulators, semiconductors and conductors, Energy	y band gaps of	
	ser	niconductors, Effective masses and Fermi surfaces, Localized par	ticles, Donors,	
	Ac	ceptors and Deep traps, Mobility, Excitons, Density of states, Varia	tion of density	
	of	states with energy and Size of crystal.		
UNIT-III	:Qu	antum Size Effect: Quantum confinement, Nanomaterials st	ructures, Two	
	dir	nensional quantum system, Quantum well, Quantum wire and	Quantum dot,	
	Fabrication techniques.			
UNIT-IV:	: Ch	aracterization techniques of Nanomaterials: Determination of part	icle size, XRD	
	(So	cherrer's formula), Increase in width of XRD peaks of nanopar	ticles, Shift in	
	abs	sorption spectra peak of nanoparticles, Shift in photoluminescence	peaks, Electron	
	Mi	croscopy: Scanning Electron Microscopy (SEM), Transmis	sion Electron	

Microscopy (TEM), Scanning Probe Microscopy (SPM), Scanning Tunneling UNIT-V: Synthesis of Nanomaterials: Key issue in the synthesis of Nanomaterials, Different approaches of synthesis, Top down and Bottom up approaches, Cluster beam evaporation, Ball Milling, Chemical bath deposition with capping agent, Carbon nanotubes (CNT)- Synthesis, Properties and Applications.

Text and References Books

- 1. Nanostructures & Nanomaterials, Synthesis, Properties & Applications by Guozhong Cao, Imperial College Press.
- 2. Introduction to Nanotechnology, by Charles P. Poole, Jr. Frank J. Owens, John Wiley &
- 3. Sons Inc. Publication.
- 4. Quantum Wells, Wires and Dots by Paul Harrison, John Wiley & Sons Ltd.
- 5. Quantum Dot Hetrostructures, by D. Bimberg, M. Grundman, N.N. Ledenstov.
- 6. Introduction to Nanoscience and Nanotechnology by Hornyak G.L., Tibbals H.F., Dutta J.,
- 7. Moore J.J., CRC Press.
- 8. Carbon Nanotechnology by Liming Dai
- 9. Carbon Nanotubes: Properties and Applications by Michael J. O'. Connell.

Syllabus for M.Sc. (Physics)

Semester IV

SMP-609C ELECTIVE PAPER II-COMPUTATIONAL METHODS AND PROGRAMMING Credit-03

- **UNIT-I:** Computational methods: Methods for determination of zeros of linear and nonlinear algebraic equations and transcendental equations, Bisection method, Muller's method, Quotient-difference method, Newton-Raphson method Solution of simultaneous linear equations, consistency of a system of linear equation, Gaussian elimination, LU decomposition method, matrix inversion, Jacobi iterative method, Gauss-Seidel method, convergence of Gauss-Seidel method
- **UNIT-II:** Diagonalization of matrices, Eigen values and eigenvectors of matrices, Power and Jacobi method. Finite differences, Newton's formula for interpolation, Gauss, Stirling, Bessel's, Everett's formulae, Divided differences, Newton's general interpolation formula, Lagrange's interpolation formula.
- **UNIT-III:** Numerical differentiation, Numerical integration, Trapezoidal rule, Simpson 1/3 and 3/8 rules, Boole's and waddles rules, Newton-Cote's formula, Euler- Maclaurin formula, Gauss quadrature formula. Method of Least square curve fitting, straight line and quadratic equation fitting, curve fitting of curves $y = ax_b$, $y = ae_{bx}$, $xy_a = b$ and $y = ab_x$, curve fitting by sum of exponentials, data fitting with cubic splines.
- **UNIT-IV:** Numerical solution of ordinary differential equations, Euler, Picard and Runge-Kutta methods, Predictor and corrector method, elementary ideas of solutions of partial differential equations, solution of Laplace equation
- **UNIT-V:** Programming: elementary information about digital computer principles, compilers, interpreters and operating systems, Fortran programming, flow charts, integer and floating point, arithmetic expressions, built in functions, executable and non executable statements, IF statements, GO TO statements, DO loop and implied DO loop, simple computer programmes.

Text and References Books

- 1. Introductory Methods of Numerical analysis by S.S. Shastri
- 2. Numerical Analysis by Rajaraman
- 3. Numerical Methods by E. Balagurusamy
- 4. Fortran Programming by Rajaraman
- 5. Numerical methods for scientific & Eng. Computatioans by Jain, Iyengar

SMP-60	9A	SPECIAL PAPER- I/ ELECTROINCS – II	Credit-03
UNIT-I:	Di	gital communication: Pulse - Modulation systems, sampling the	orem – Low –
	Pa	ss and Band – Pass signals, PAM, Channel BW for a PAM s	ignal . Natural
	sar	npling. Flat – top sampling. Signal recovery through Holding, G	Quantization of
	sig	nals, Quantization error, Differential PCM, Delta Modulation, A	Adaptive Delta
	Mo	odulation, CVSD . Digital Modulation techniques : BPSK, DPSK	K, QPSK, PSK,
	QA	ASK, BFSK, FSK, MSK	

- **UNIT-II:** Mathematical representation of Noise: Sources of noise. Frequency domain representation of noise, effect of filtering on the probability density of Gaussian noise, spectral component of noise, effect of a filter on the power spectral density of noise. Superposition of noises. Mixing involving noise. Linear filtering. Noise Bandwidth, Quadrature components of noise, Power spectral density of nc(t), ns(t) and their time derivatives.
- UNIT-III: Data Transmission: Baseband signal receiver, probability of error. Optimum filter . White noise. Matched filter and probability of error. Coherent reception. Correlation, PSK, FSK, Non- coherent detection of FSK. Differential PSK, QPSK, calculation of error probability for BPSK, BFSK, and QPSK.
- **UNIT-IV:** Noise in pulse code and Delta modulation system: PCM Transmission, Calculation of Quantization noise, Output signal power, Effect of thermal noise in D M, Output signal to– noise ratio in PCM, DM, Quantization noise in DM, Effect of thermal noise in Delta modulation, Output signal to noise ratio in DM.
- **UNIT-V:** Computer Communication Systems: Types of networks, Design features of a communication network, examples TYMNET, ARPANET, ISDN, LAN. Mobile Radio and Satellites: Time division multiple Access (TDMA), Frequency Division Multiple Access (FDMA), ALOHA, Slotted ALOHA, Carrier Sense Multiple Access (CSMA) Poisson distribution, Protocols, Cellular communications, Mobile communication via Satellites, Bandwidth consideration in INTERNET

Text and Reference Books

- 1. Principles of Communication Systems, second Edition by Taub and Schilling Communication
- 2. Systems, third edition, by Simon Haykin

SMP-609	OB SPECIAL PAPER II: INFORMATICS – II	Credit-03
UNIT-I:	Multiplexing (FDM, TDM), switching paradigms, Propagation	delay, Clock
	Synchronization, Network access control, Overview of Satellite Co	ommunication,
	Broadcast channel, Optical Fibre Communication Systems, Powe	r and energy
	spectra, Distortionless transmissions, Signal distortion over a channel.	
UNIT-II:	Bandwidth and Rate of transmission, Communication in Noisy channels	nels, Optimum
	Signal Detection, Channel Capacity, Hartley Shannon Law, Error Cor	recting Codes,
	Error Control, Line Control, Rate Control, Repeaters, Concentrators	, regenerators,
	Link behaviour, Elementary coding ideas, ATM as a transport m	echanism, An
	overview of telecom network ISDN.	
UNIT-III	Network types and architecture, Protocols, interfaces and services	s, X.25,ISDN,

- UNIT-III: Network types and architecture, Protocols, interfaces and services, X.25,ISDN, ATM, VPN, frame relay, Wireless transmission, Bridges, TCP/IP and ISOOSI models, Routing, Congestion and Flow control, Internetwork routing, Data link protocols, Multiple access protocols, TCP, UDP, Transport layer error recovery, Application layer services and protocols, IP addressing, Network Security.
- **UNIT-IV:** Evolution of Internet, Internet architecture; goals and key issues related to internetworking technologies; Internet connectivity, Domain name scheme, Technology and tools relevant for web access (FTP, email, search tools).
- **UNIT-V:** Internet Security, Fundamentals of Network Management. Multimedia, Technique of data compression, voice, video, Mbone and interactive video-on-demand over the internet, mobile Computing.

Text and References Books

- 1. Data communication Reid and Bartskor
- 2. Data Networks Gallager
- 3. Data Communication William stalling
- 4. Communication networks Leon Garcia and Widjaja
- 5. Introduction to communication system S. Haykins
- 6. Analog and Digital communication S. Haykins
- 7. Multimedia Networking Bohdan O. Szuprowic, McGraw
- 8. Hill, Snigapore, 1995 (ISE)
- 9. Internetworking Technologies Handbook

SMP-609	SPECIAL PAPER II: Astrophysics II Credi	t-03
UNIT-I:	ar High Energy Radiative Processes in Astronomy: Synchrotron emission	on for a
	ngle particle and an ensemble of particles - Energy loss and electron sc	attering-
	ompton scattering-Bremsstrahlung radiation.	
UNIT-II:	ar formation in ISM, clusters, variable and binary stars, Interstellar medium	n(ISM)-
	rious nebula-Jeans condition for collapse-Protostars -star formation.	Stellar
	lusters: open and Globular- IMF. Variable stars-period luminosity relati	ons and
	stance determination Binary stars-types of binaries.	
UNIT-III:	alaxies : The Milky way Galaxy- kinematics- Hubble's classification sch	eme for
	ternal galaxies- spirals and ellipticals -irregulars-Normal galaxies and	AGNs-
	uasi-stellar objects-Unified Model-Gamma Ray burst.	
UNIT-IV.	eneral Theory of Relativity: Principle of Equivalence- Gravity and G	eometry
	etric Tensor and its properties- curved space time-tensor calculus -co	-variant
	fferentiation-parallel transport-particle trajectories in Grave field- Einstein	n's field
	quations-Bianchi Identities- Schwa child metric.	
UNIT-V:	arge scale Structure and Cosmology: Hubble's law- angular size- Fri	ledmann
	obertson-Walker Model, cosmological constants-the early u	niverse-
	ermodynamics of early universe- nucleo-synthesis-Microwave Bac	kground
	diation- elementary ideas on structure formations- age of universe. Big B	ang and
Tort Dool	eady State Theory.	
1 Astroph	og K S Krighnagwamy (CLID)	
2 Astroph	cs Baidyanath Basy Prentice Hall	
2. Astroph 3 Astroph	cs-K D Abhavnakar(Orient Longman)	
A Electror	Imaging Astronomy-Melean(Wiley)	
5 The clas	al theory of Fields Vol-2 Landau and Lifshitz (Butte worthHeinemann)	
6. Introduc	in to cosmology-I V Narlikar(CUP)	
7. General	ativity and cosmology J V Narlikar-Mcmmillan	
8. Text Bo	on Astrono and Astrophysics with Elements of cosmology-V B Bhatia.Nar	osa.
Reference	ooks:	
1. Observa	nal Astrophysics- Smith(CUP)	
2. Physical	niverse – F Shu (OUP)	
3. Astroph	cal quantities – Allen (Willey)	
4. Astroph	cal quantities –K R Lang(Springer Verlag)	
	Syllabus for M.Sc. (Physics)	
	Semester III	
SMP-609	SPECIAL PAPER II: Astrophysics I Credi	t-03
	SPECIAL PAPER-III ASTROPHYSICS –I	
UNIT-I:	elestial co-ordinate system and observational techniques: Celestial	sphere-
	dereal and solar time, Equation of time, different co-ordinate system, detern	nination
	luminosity-Black body radiations-luminosity and magnitude of star relation	ons with
	ass, radius, colour index, distance determination by parallax and other meth	ods.
UNIT II:	elescopes and Instrumentations: Different optical configuration for astro	nomical
	lescope plate scale and diffraction limits-telescopes for a-ray, X-ray, UV,	IR, mm

and radio astronomy- photometry with photometers and CCD- spectrometry and polarimetry with various instruments. UNIT-III: Stellar structure and Evolution Part-I :Spectral classification of stars-Saha's

equation-CNO- cycles –HR Diagram-description of radiation fields opacities

radiative transfer-structure of spectral line-hydrostaticequilibrium equation of statemain sequence.

- **UNIT-IV: Stallar structure of Evolution Part-II**.Evolution of main sequence-late stagessupernovae degenerate remnants: white dwarf Chandrasekhar limit-Neutron starpulsars Black Holes. Binary stars- different types of binaries- WD binaries-neutron star and black hole binaries.
- **UNIT-V**: Sun and Solar system: Physical characteristics of sun-rotation, magnetic field, granulation, sunspots, other chromospheric activities. Primordial Solar Nebula-Origin and evolution of solar system- planets, comets, asteroids and other minor bodies-formation of comets-ort cloud planetary dust and gas.

Text Books:

- 1. Astrophysics -K.S Krishnaswamy (CUP)
- 2. Astrophysics-Baidyanath Basu, Prentical Hall
- 3. Astrophysics-KD Abhankar (Orient Longman)
- 4. Electronic Imaging in Astronomy Mclean (Willey)
- 5. Text Book on Astronomy and Astrophysics with elements of cosmology V.B.Bhatia, Narosa.

Reference Books.

- 1. Observational Astrophysics-Smith (Cup)
- 2. Physical Universe-F Shu (Cup)
- 3. Astrophysical Quantities Allen (Willey)
- 4. Astrophysical Quantities KR Lang (Springer verlag)

Note : Break-up of marks for practical examination and project work:

(a) Laboratory Practical

Total	
(iv) Internal Assessment	— 20 Marks
(iii) Viva-voce	— 20 Marks
(ii) Practical Record	— 20 Marks
(i) Experiment	—— 40 Marks

(b) **Project Work :** Each M.Sc.-II student is required to submit two copies of the project report at the time of examination. The project work will be evaluated by an external and an internal examiners appointed by the University.

(i) Theory / Experiment/ Computatio	n - 40 Marks
(ii) Project Report	— 20 Marks
(iii) Viva-voce	—— 20 Marks
(iv) Internal Assessment	—— 20 Marks
То	tal ——100 Marks

SMP-50 4	Computer Architecture & Assembly Language Programming	Credit-03	
UNIT-I:	Logic Circuits - Logic Gates, Logic Circuits, Combinational C	<i>Circuits</i> – Canonical	
	and Standard Forms, Minimization of Gates; Design of Com	binational Circuits;	
	Examples of Logic Combinational Circuits – Adders, Dec	oders, Multiplexer,	
	Encoder, Programmable Logic Array, Read Only Memory	(ROM).Sequential	
	Circuit's Definition, <i>Flip Flops</i> – Basic Flip-Flops, Excitation T	ables, Master Slave	
	Flip Flops, Edge Triggered Flip-flops; Sequential Circuit Desig	n & its examples –	
	Registers, Counters (Asynchronous & Synchronous), RAM; L	Design of a Simple	
	Counter.		
UNIT-II:	Microprocessor Architecture: Microcomputer Architecture; Stru	icture of 8086 CPU	
	[Ine Bus Interface Unit, Execution Unit (EU)]; Register Set of 8	086; Instruction Set	
	of 8080 – Data Transfer Instructions, Arithmetic Instructions	, Bit Manipulation	
	Instructions, Program Execution Transfer Instructions, String Ins	Direct Processor	
	Control instructions, <i>Addressing Modes</i> – Register, infinediate,	Direct & indirect	
IINIT_III	Addressing modes. Introduction to AIP: Need and use of AIP: Assembly Prog	ram Execution: An	
01111-111	Assembly Program and its components - The Program Apportation	& Directives: Input	
	Output in ALP -Interrupts DOS Function Calls (Using INT 2	(1H). The Types of	
	Assembly Programs – COM Programs Exe Programs & Bin Prog	rams	
UNIT-IV: Simple Assembly Programs – Data Transfer Simple Arithmetic Application			
	Application Using Shift Operations, Larger of the Two Numbers:	Programming With	
	Loops and Comparisons – Simple Program Loops, Find the Larg	est and the Smallest	
	Array Values, Character Coded Data, Code Conversion;		
UNIT-V:	Programming for Arithmetic and String Operations - Str	ing Processing, &	
	Arithmetic Problems. Use of Arrays in Assembly; Modular P	rogramming – The	
	stack, FAR and NEAR Procedures, Parameter Passing in Pa	rocedures, External	
	Procedures. Interfacing Assembly Language Routines to High Lev	vel Language <i>i.e.</i> C.	
Suggeste	ed Readings:		
1. Computer Architecture: Morris Mano			
2. Operating System Concepts: Silberchatz Galwin Gagne			
3. Web Te	chnology: A.S. Godbole & Atul Kahate		
4. Digital l	Electronics: Malvino & Leech		
5. Advance Microprocessor & Peripherals: A.K. Ray & Bhurchandi			
6. Introduction to Microprocessor: Mathur			